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Abstract— This paper discusses the introduction of an in-
tegrated Posit Processing Unit (PPU) as an alternative to
Floating-point Processing Unit (FPU) for Deep Neural Networks
(DNNs) in automotive applications. Autonomous Driving tasks
are increasingly depending on DNNs. For example, the detection
of obstacles by means of object classification needs to be
performed in real-time without involving remote computing.
To speed up the inference phase of DNNs the CPUs on-board
the vehicle should be equipped with co-processors, such as
GPUs, which embed specific optimization for DNN tasks. In this
work, we review an alternative arithmetic that could be used
within the co-processor. We argue that a new representation for
floating point numbers called Posit is particularly advantageous,
allowing for a better trade-off between computation accuracy
and implementation complexity. We conclude that implement-
ing a PPU within the co-processor is a promising way to speed
up the DNN inference phase.

I. INTRODUCTION

Assisted and Autonomous Driving (AD) require the un-
derstanding of the physical environment outside the vehicle
as shown in Figure 1. New on-board automotive computing
architectures [1]–[6] will exploit powerful embedded High
Performance Computing (eHPC) platforms, such as NVDIA
Pegasus or Intel GO, implementing in real-time the following
vehicle perception and autonomous decision tasks:

• Observation: building a model of the surrounding en-
vironment, where inputs are the direct observations
produced by sensors (visual and infrared cameras, radar,
sonar, lidar [7]) and output is a geometrical and topo-
logical representation of the environment.

• Perception: localization of the vehicle, i.e. estimating its
path, position and orientation within a map, by fusing
global and relative data (e.g. Global Navigation Satellite
signals fused with local accelerometer and gyro inertial
sensors); detection of all static and dynamic obstacles
(e.g. landmarks, road and traffic signs, vehicles, pedes-
trian, bikers) and their classification depending on how
well they match up with a library of pre-determined
shape and motion descriptors.

• Planning and decision: move the car, which requires
Artificial Intelligence (AI) for adaptive route planning
and trajectory control used to direct the vehicle to its
destination, avoiding obstacles, following traffic rules,
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and predicting the behavior of neighbor vehicles, bikers
and pedestrian.

Online map data is required to provide long range planning
information such as lane end, speed limits, construction sites
and other changing road conditions. All these operations
have to be repeated in a time scale of about 5 ms (200 Hz)
with stringent low-latency requirements [8, 9]. To support
the functions of mapping, localization and object identi-
fication, a perception process must be implemented (e.g.
[10]). Perception results from fusion of all surround sensing
and online map data into single surround model. For data-
fusion a grid-based approach may be used to determine the
occupancy probability (Bayesian approach) of a cell, or the
belief function (Dempster-Shafer approach), by evaluating
the current sensor reading and the history from past cycle
[11]. Grid occupancy is calculated from sensor data, with
explicit modeling of uncertainties. Grid cells can bear addi-
tional information such as moving object speed, which can
be used to predict likely behavior.

The current and future trend is solving such difficult tasks
by using Deep Neural Networks (DNNs) [12]–[17] trained
on millions of frames on a supercomputer based on GPUs
with units specialized for tensor operations. Once the DNN
has been trained and validated, it can be used in real-time
on-board a vehicle (a car or truck or a public transport
bus/taxi), to understand the environment and help and inform
higher-level of the decision and control process. The speed
of the DNN inference is crucial in this kind of latency-
critical applications. But even more crucial is the fact that
autonomous driving is a safety critical application, thus it
requires a reliable software implementation of DNNs on
a reliable hardware. In summary, a fast and reliable DNN
module is required, either implemented in software or in
hardware. Regarding the inference phase (the only phase that
need to be performed on-board the vehicle), 8 bit or less
are enough on non-safety critical applications [17]–[19], by
using vector quantization or integer/fixed-point arithmetic.
On the contrary, safety critical applications (see critical
automotive standards, such as the ISO 26262 functional
safety specification) still require 16 or 32 bits and thus
floating point representations must be preferred over fixed
point/integer representations.

To accelerate DNN computing in automotive applications,
this paper discusses the introduction of the Posit Processing
Unit (PPU) as alternative to the Floating-point Process-
ing Unit (FPU). After discussing in Section II alternative
representations for real numbers, the new Posits format is



Fig. 1. AD architecture with perception (on the left) based on sensor data
fusion and planning (on the right). Both functions can take advantage of AI
approaches in particular deep learning techniques.

proposed in Section III. In Sections IV we argue that 16-
bit Posits can replace conventional FPUs, since they are
more accurate if the same number of bits is used. Moreover,
Posits enjoy other interesting properties, like the possibility
to compare two Posits by treating them as two integers on
ALU. Hardware/ Software implementations issues of a PPU
are also discussed, together with results we obtained by em-
ulating a PPU exploiting a General Purpose microprocessor
(GPP) or a microcontroller. Conclusions and future hints of
the use of PPU for the DNN training phase are presented in
Section V.

II. ALTERNATIVE REAL NUMBER REPRESENTATIONS

Representing real numbers in electronic computers re-
quires the selection of a method to map real numbers into a
sequence of bits. In addition, a circuitry is typically required
to perform in hardware (and thus, in a fast way) both
the basic four arithmetic operations (+, −, ×, /) and the
comparison operators of two numbers (<, ==, >, ≤, ≥).
Hardware realization of specific elementary functions are
also desired.

A. Type-I Unums

Type-I uniform numbers have been introduced in
Gustafson’s book [20]. The Type-I Unums data format is a
superset of IEEE 754 Standard floating-point format; it uses
a “ubit” at the end of the fraction to indicate whether a real
number is an exact float or lies in the open interval between
adjacent floats. While the sign, exponent, and fraction bit
fields take their definition from IEEE 754, the exponent and
fraction field lengths vary automatically, from a single bit
up to some user specified maximum (see Figure 2). Type-I
Unums provide a compact way to express interval arithmetic,
but their variable length demands extra management. They
can express IEEE float behavior, via an explicit rounding
function.

• Advantages: superset of floats.
• Disadvantages: variable length; require complex inter-

val arithmetic.
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S Exp (8 bits) Fraction (12 bits) U Esize Fsize︸ ︷︷ ︸
Utag

Fig. 2. An example of Type-I Unum. The first three fields are the same of
floating point numbers, the remaining ubit, esize, fsize are additional fields.

• Software implementations: Type-I Unums have been
implemented in Matlab and applied to a Model Predic-
tive Control Problems [21]. In that work, the authors
showed a save of 80% of storage space with respect the
use of Floats, without loosing in accuracy.

• Hardware implementations: Type-I Unums have been
recently implemented in hardware, on FPGA [16, 22].
The authors conclude that implementing in hardware
Type-I Unums requires a bigger area than that of an
FPU. This is due to both the variable length operands
and the interval arithmetic, which is more complex
than arithmetic between floats. We believe that Type-I
Unums are not particularly appealing for DNN in au-
tonomous driving applications, due to the disadvantages
mentioned above.

B. Type-II Unums

Type-II Unums have been introduced again by Prof.
Gustafson in [23]. The basic requirement in designing Type-
II Unums was a fixed length data type. Fixed length is
very important when working with problems showing data
parallelism and, more in general, to efficiently work with
arrays (vectors, matrices, tensors, etc.). Another important
designing criteria was the desire to not overlook any real
number. All real numbers from − inf to + inf should be
represented, although with different precisions. Here the
key idea was to represent both exact real numbers and the
open interval between two consecutive exact real numbers
represented. Then Gustafson exploited the idea of “projective
reals”, e.g., the idea of mapping the real line to a circle, with
the intent of constructing a bijection between the line and the
circle. By using this approach, Gustafson was able to express
the opposite of a number in the circle via “horizontal flip-
ping”, while, more interestingly, the reciprocal of a number is
obtained exactly by “vertical flipping” of the representation.

This is a very important property of Type-II Unums,
since reciprocating a number is straightforward and thus
computing the division requires a similar amount of time
of computing the product (by computing a/b as a × b−1).
This means that the “bad boy” of computing (dividing
two real numbers) is removed, and all the four arithmetic
operations require similar amount of time. Figure 3 shows
Type-II Unums when using only 4 bits, represented on the
mentioned circle. Finally, the idea of Type-II Unums was
the computation of accurate and reproducible results, even
on parallel computers. Based on this Gustafson introduced
the idea of Set of Real Numbers (SORNs), an intriguing
way to represent any set of Type-II Unums. Unfortunately
operations on SORNs require a look-up table, thus limiting



Fig. 3. Type-II Unums on 4 bits. This kind of numbers can be represented
on a circle. Even more interesting, the representation of the reciprocal of a
number can be easily obtained by working on the representation itself, by
performing a rotation on the horizontal axis.

the total length of Type-II Unums on current hardware to 20
bits or less.

• Advantages: they have fixed size, in contrast to Type-
I Unums. In addition, computing the opposite and the
reciprocal takes the same time

• Disadvantages: The SORN approach needs look-up
tables requiring large amounts of ROM/RAM.

• Hardware implementations: Type-II Unums have not
been implemented in hardware yet. The SORN ap-
proach they are based allows using a look-up table, for
numbers up to 20 bits.

C. Other formats

Jorgensen has recently patented a format which retains the
correct bounds after each computation and the corresponding
hardware [24]. This proposal is another evidence of the
need of novel formats for real numbers and novel hardware
implementations, and, although interesting, is too similar
to Type-I Unums. On the other hand Type-I Unums are
free from patents rights. In conclusion of this section, none
of these newly proposed floating point representations are
satisfactory for DNNs. On the contrary, the Posit data format,
explained in the next section has promising properties.

III. THE POSIT REPRESENTATION

Posits are a by-product of the Type-II Unums numbers
described in previous section and they have been introduced
very recently in [25], again by Gustafson. The Posit represen-
tation is depicted in Figure 4. A Posit contains a maximum
of four fields: the sign field (1 bit), the regime field (variable-
length field), the exponent bit (fixed-length field which can
also be of zero bits), and the fraction field (variable-length
field, which can even be absent for some configurations). The
length of the exponent field is decided a-priori, together with
the total length for Posits. These two lengths characterize
different types of Posit representations. The length of the
regime field is determined using a run-length method: the
number of consecutive 0 after the sign bit and before the
first 1 bit is the regime length (a regime field can be also
made by a sequence of 1, until the first 0 is encountered:
in that case the number of consecutive 1 is the regime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S Regime (1..re) Exponent (0..es) Fraction (...)

Fig. 4. An example of Posit data type.
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Fig. 5. Two examples of 16-bit Posit with 3 bits for exponent (es=3). In
the upper the numerical value is: +256−3 ·25 · (1+221/256) (221/256 is
the value of the fraction, 1 + 221/256 is the value of the mantissa). The final
value is therefore 1.907348× 10−6 · (1 + 221/256) = 3.55393× 10−6.
In the lower the numerical value is: +256+1 · 23 · (1 + 40/512) (40/512
is the value of the fraction, 1 + 40/512 is the value of the mantissa). The
final value is therefore 2048 · (1 + 40/512) = 2208.

length, but this time its value is negative). Once the length
of the regime is known, the length of the mantissa can be
determined, as the number of remaining bits (after skipping
the exponent bits). The formula that allows to retrieve the real
number is available [25] and two examples of its application
are shown in Figure 5. Please observe how the two Posits
representations shown in the figure have a different number
of bits reserved for the fraction field (8 and 9, respectively),
having different lengths for the regime fields (4 vs 3).

Similarly to Type-II Unums, Posits can be put on a circle
sharing the concept of projection of reals over a circle, but
different design decisions allow to implement Posit operation
without imposing the use of a look-up table. In Figure 6 the
(semi)-circles of 3-bit, 4-bit and 5-bit Posits are shown.

Posits enjoy many really interesting properties, such as:
• unique representation for zero
• no representations wasted for Not-A-Number (when

using Posits, an exception is raised instead of reserving
one or more representations for NaNs). Please notice
that the floating-point standard wastes a lot of repre-
sentations for NaNs, which also make the hardware for
comparing floats very complex.

Even more interestingly, Posits are sorted like signed
integers (when the latters are represented using the two’s
complement). Thus comparing two Posits can be done in
ALU (by type re-casting to signed integers): negative Posits
are expressed using complement two as integers, and the
other three fields allow direct ordering.

We think the brightest idea of the Posit representation is
to reserve more bits to the mantissa for small real numbers
(closer to zero) and less for large real numbers, within a
fixed length format (the total length is fixed, although the
length of the regime and that of the mantissa vary).

Finally observe that, since the Posit format standardization
process is still on its infancy, we are on time to provide useful
feedbacks to the standardization committee, providing them
suggestions based on the experience in their use with DNN.



Fig. 6. Posits semi-circles for different numbers of bits (3, 4 and 5).

A. Dimensioning Posits

As mentioned the Posit representation is parametrized over
the total number of bits to use and the number of them to
reserve to the exponent. Depending on the task at hand,
these two numbers can chosen accordingly. For instance,
as regards the DNN inference phase we know that 16-bit
floats are sufficient enough. Thus we know that 16-bit Posits
are sufficient too. However, how many bits to reserve to the
exponent part of the Posit can still be optimized on the task
at hand. In addition we observe that the Posit representation
is compatible with the flexpoint idea introduced in [15].
Indeed, it is possible to create Posits tensors that share
an extra exponent field. Thus, when dimensioning Posits
this extra exponent field must be dimensioned together
with the dimensioning of Posits. Finally we point out how
that stochastic rounding [26] could be integrated in Posit
arithmetic too (even if this adds an extra logic and thus
additional transistors).

IV. HARDWARE IMPLEMENTATION ISSUES

The implementation of a PPU will take advantage of the
operations over Posits that can be traced back to three main
levels of Posit representation: i) binary form, ii) decoded
form, and iii) expanded form. Indeed we associate to any
operation a Posit representation level. The first one is the
binary representation of Posits discussed so far that can be
used for some operations, with the effect of fastest speed
and minimal complexity. The second form decodes the Posit
in the three components of regime, exponent and fraction
by parsing the variable length encoding of the regime field.
Inversion, doubling and halving can be efficiently computed
by working on this intermediate representation, in addition
to the fundamental arithmetic operations when fraction is
zero. The third level requires a more sophisticated logic that,
anyway, in comparison to IEEE floating points, can take
advantage of the separation between regime and exponent
parts.

Dispatcher

ALU# PPU# Memory 
Store DMA

Instruction Stream Decoder

Memory 
Load

Memory Control
(Cache and Memory)

Unified Register File
(vector registers)

Execution Units

Fig. 7. Proposed superscalar architecture for a processor (or a co-processor)
that integrates the PPU. Thanks to register sharing and the properties of
Posit some operations can be performed using the ALU. Multiple ALU and
PPU and execution units are possible thanks to the parallel structure of the
superscalar architecture.

A. The advantage of using shared registers between ALU
and PPU

The property of Posit representation that allows to perform
comparisons using the integer comparison can be exploited
for a subset of DNN operations. We are referring on partic-
ular to the argmax operation at the end of the inference,
to the ReLu activation function, and to Max pooling in
convolutional neural networks (see next subsection). The
manipulation of a Posit number using integer operations or
bitwise operations justifies the proposal of adopting PPU as
an integrated part of a CPU, namely as an Execution Unit.
Some Posit operation could require custom instructions while
others (such as the comparison) could be obtained via integer
instructions. Figure 7 shows the schematic of registers within
the co-processor, to reuse the ALU for comparing Posits.

In the instructions’ opcode we must be able to specify
whether the 32-bit registry contains an operand of 8, 16, or 32
bits, being agnostic on its content (an address, an unsigned,
an integer or a posit). This approach, depicted in Figure 7, is
common to modern architecture (e.g. Intel Core CPUs) that
generalize this properties to larger register banks, up to 512
bits.

B. Specific DNN functions to implement in hardware

In existing custom hardware for Tensor operations (e.g.
Nvidia Tensor units and Google TPU) there are specific
operations that are structured in hardware due to their
repetitive nature. In the following we are considering some
fundamental DNN operations that can take advantage of
Posit representation and that can be directly executed. DNN
functions that are interesting to implement in hardware are
the following:



Fig. 8. The Sigmoid function and its approximation using Posits.

• Sigmoid function: 1
e−x+1 . This function is widely used

as activation function in DNNs. However, its evaluation
is time consuming, since it requires and exponentiation
and a division. As recently observed [25], this function
can be easily approximated in hardware by doing simple
bit-cloning and masking on the Posit representation.
Figure 8 shows how closely the approximated version
compares with the exact counterpart.

• ReLu: max(0, x) (Rectified Linear Unit). This func-
tion is an appealing alternative to the exact Sigmoid
function, reducing the problem of vanishing gradient
while being faster. As such, it has been widely used in
DNNs. However, when using Posits, the approximated
sigmoid function discussed above can be used on its
place, since the two require comparable time (being
both executed in hardware). Thus computer scientist are
no longer forced to use a non-differentiable and less
expressive function, like the ReLu, and can continue
to use the more expressive Sigmoid function (although
approximated).

• MaxPool: max pooling is a mathematical function
widely used in convolutional neural networks. MaxPool
can be thought as a max filter applied to an image block-
wise and thus it requires many comparisons between
real numbers. Having the possibility to compare two
Posits using the ALU we saving a significant of transis-
tors (and thus we save energy consumption at run-time)
by not having to implement the comparison operators
within the PPU.

• dot product:
∑

i ai · bi. This function is crucial in
multi-layer perceptrons DNNs, since the dot product
between two vectors of real numbers a and b is routinely
computed between the inputs (or each intermediate
representation) and the layer weights. In addition, the
standard (row-by-column) matrix by vector product is
nothing more that a series of dot products, and it is
the basic operation in convolutional DNNs. The dot
product of two real vectors represented using the Posit
data format needs to be carefully designed in hardware.
This is a special function that falls within the category of
fused operations. The key observation is that, although
the final result of the dot product fits a given number
of bits, the intermediate term may requires many more,
in order to not loose accuracy [27]. First versions of
the IEEE standard for floats (such as the 754 of 1985)
did not specify the number of bits to use for fused

TABLE I
DIFFERENT SOLUTIONS TO COMPUTE WITH POSITS

Posits up to 14 bits Larger Posits

Solution A Hardware PPU Hardware PPU

Solution B
Look-up table on
ROM/RAM plus
some ALU

Emulated PPU using ALU
only (not the FPU), by in-
cluding the developed C++
Posit class

operations. Only in the last revision of the standard (the
2008 version) it has been standardized.

C. PPU emulation library

In this sub-section we report our experience with C++ im-
plementation of Posits on an emulation platform represented
by a GPP processor, e.g. an Intel Core i7. Posits library has
been implemented using a C++ template library parametrized
over Posit length and exponent length. The implementation
takes advantage of the representation levels discussed in
Section IV. Integer ALU are used for the level 3 operations
much like the SoftFloat [28] does with IEEE floating points.
Moreover level 3 operations of small Posits (e.g. less than 14
bits) can be implemented in the library using lookup tables.
The use of a look-up table is interesting for those applications
requiring a low precision and for those computers having
sufficient cache memory, like current desktop PCs. Table I
summarizes the different implementation options. Thanks to
the library, computations with real numbers can be performed
using a fully software implementation of Posits, being able
to save memory and bandwidth. In particular the library can
be used for working with the C++ Eigen template matrices
library [29].

D. Summary: the advantages of Posits over Floats

When performing the inference of a trained DNN in an
autonomous driving application the advantages are:

1) More efficient use of bits (less bit/higher accuracy)
2) 16-bit Posits are more accurate than 16-bit Floats
3) The PPU within the processor/co-processor requires

less transistors, because the comparison operator does
not need to be implemented (use the one of the ALU)

4) The Sigmoid function can be easily computed in
hardware, due to a numerical property of Posits.

More in general, we confirm that Posits are an interesting
data format for low-precision arithmetic. In particular, using
Posit16 we are widening the range of applications for which
16 bits are enough, thus saving bandwidth, storage and
energy consumption in comparison to Float32.

V. CONCLUSIONS AND FUTURE WORK

To accelerate DNN computing in automotive applications,
the paper has discussed the introduction of PPU as alternative
to classic FPU. Once introduced the Posits as alternative
representation for real numbers, we showed that 16-bit Posits
should replace conventional FPUs, since they are more



accurate in case the same number of bits is used. Hardware
& Software implementation issues of a PPU have been
discussed, highlighting how the use of PPU would allow
saving energy, mainly because it requires less transistors than
an FPU.

The hardware implementation will be investigated in the
context of the H2020 EPI (European Processor Initiative)
project participated by relevant research and industrial part-
ners such as CEA Tech and Kalray Corporation.

As further evolution of the work we are analyzing whether
the use of Posits can be helpful even during the training phase
of DNNs. Concerning the autonomous drive application, the
training happens on remote servers. Such servers can be
equipped with co-processors as well. Even if the training
phase usually requires more bits (Float32 instead of Float16,
for instance), the use of Posit32 as a replacement of Float32
for the co-processor of the remote cluster workers is advanta-
geous for the same reasons provided for the inference phase.
Assessing whether or not Posit16 are enough for the training
phase of DNNs is an interesting issue left in on-going work.
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